SOLAR RADIO NOISE STORM AT 150.9 MHZ # FROM NANÇAY RADIOHELIOGRAPH FEBRUARY 2008 | | HELIOGRAPHICS POSITIONS
MEAN VALUES ¹ | | IMP ² | OBSERVIN | G TIME ³ | |-----|---|-----|------------------|------------|---------------------| | DAY | E-W | S-N | | START(UT) | END(UT) | ### SOLAR RADIO NOISE STORM AT 327 MHZ ## FROM NANÇAY RADIOHELIOGRAPH ### **FEBRUARY 2008** | | HELIOGRAPHICS POSITIONS
MEAN VALUES ¹ | | IMP^2 | OBSERVIN | IG TIME ³ | |-----|---|-----|---------|-----------|----------------------| | DAY | E-W | S-N | | START(UT) | END(UT) | #### OTHERS DAYS: NO DETECTABLE NOISE STORM - For the days marked by an asterisk, intense ionospheric gravity waves are observed during the whole day. Without a mode detailed analysis leadind to increase uncertainties in the deviation , the positions which are indicated are estimated within 0.2 R - ** Following a large burst - *** importance not well determined due to the proximity off the very strong other source - **** no flux measurements available ¹ POSITIVE E-W AND S-N COORDINATES CORRESPOND TO THE N-W QUADRANT 2 IMP1: FLUX< 5 SFU $\,$ IMP2: 5< FLUX < 20 SFU $\,$ IMP3: 20< FLUX <100 SFU IMP4: 100< FLUX <300 SFU $\,$ IMP5> 300 SFU ³ E NOISE STORM IN PROGRESS AT THE BEGINNING OF THE NANÇAY OBSERVATIONS D NOISE STORM IN PROGRESS AT THE END OF THE NANCAY OBSERVATIONS